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1. Introduction

Spontaneously broken supersymmetry (susy) is an attractive solution to the hierarchy problem

[1]. The breaking of supersymmetry typically occurs in a sector sequestered from the fields

of the MSSM. In the sequestered sector the minimum of the effective potential cannot satisfy

the F-flatness condition for all of the fields. It is not necessary for this minimum to be the

global minimum of the potential [2–4] provided that the tunneling rate to the true minimum is

slow enough that the Universe has a lifetime longer than its observed age. Such metastability

appears to be generic when embedding the MSSM into a larger theory such as string theory.

It is currently believed that the true vacuum of string theory is supersymmetric and therefore

phenomenologically unsuitable, but there exists a huge landscape of metastable vacua that

are cosmologically long-lived where the SM is realized.

Models of dynamical supersymmetry breaking whose global minimum is non-supersymmetric

must satisfy several constraints [5–7]. These constraints are not necessary for theories that

have global supersymmetric vacua and a long lived metastable vacuum. For example, it

has recently been observed that massive supersymmetric QCD possesses susy breaking local

minima whose lifetimes can be longer than the present age of the universe [8]. Similarly,

in O’Raifeartaigh models that have their small mass scales generated through dynamics,

or“retrofitted” [9], supersymmetric minima are brought in from infinity and the susy break-

ing minimum becomes metastable. The simplicity of these theories demonstrates the gener-

icness of metastable minima and suggests that some variant of these theories may provide a

phenomenologically viable supersymmetry breaking mechanism.
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In the early Universe, after inflation, the visible sector was reheated by inflaton decays

to a very high temperature. The susy breaking hidden sector can also be reheated to a

comparable temperature, for instance if the inflaton decays democratically to all fields or if

the inflaton originates in the hidden sector. Even if the inflaton does not directly reheat the

DSB sector, the DSB sector will be reheated if it is sufficiently well coupled to the visible sector

(e.g., in low-scale gauge mediation). At high temperatures the local susy breaking minimum

is typically in a different place from the low temperature minima and as the Universe cools,

the system may evolve towards either the susy breaking or susy preserving vacuum. In this

note we address this thermal evolution of the effective potential in models with metastable

dynamical supersymmetry breaking.

The organization of the paper is as follows. In Sec. 2 other cosmological constraints on

supersymmetry breaking are discussed. While these constraints can be severe for high re-

heating temperatures, we describe scenarios where they are not problematic. In Sec. 3 we

describe the thermal history of Intriligator, Seiberg and Shih (ISS) models [8] of supersym-

metry breaking, see also [10–17] for related works. This theory is a prototypical example of

a model that cools into a metastable minimum rather than a supersymmetry preserving one;

we elucidate the essential features necessary for this to occur. In Sec. 4 we illustrate how the

requirement of cooling into the metastable vacuum may impose additional constraints upon

certain classes of hidden sector theories. In Sec. 5 the effects of moduli trapping and their role

in thermalizing the hidden sector are discussed. Finally, in Sec. 6 we discuss the implications

for susy breaking and populating a landscape of vacua.

2. Conventional Cosmological Constraints

This paper will address cosmological histories where the reheat temperature, TRH, is larger

than the susy breaking scale, F . With high reheat temperatures there are many other conven-

tional constraints that must be avoided. Models of susy breaking such as (low scale) Gauge

Mediation [18–23], Split Susy [24–27], or AMSB [28] can avoid these constraints while having

TRH > F 1/2 and in these situations there is a new constraint that will be discussed in later

sections.

Gravitino Problem In many models with low scale susy breaking the gravitino is the LSP

(m3/2 ∼ F/Mpl). There is no bound on the reheat temperature if the gravitino mass

is smaller than 1keV, corresponding to F 1/2 ∼ 100 − 1000TeV. Due to their small

mass, these gravitinos do not over-close the universe. Another situation where a high

reheating temperature is allowed is the case where m3/2 >∼ 10TeV, in which case the

gravitino is sufficiently unstable as to decay before big bang nucleosynthesis [29].

Polonyi Problem After inflation Polonyi fields are displaced a long way from the minimum

of their potential. Their coherent oscillations can dominate the energy density of the

universe. However if they decay early enough through renormalizable interactions then

they do not necessarily over-close the Universe [30,31].
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Other Moduli problem The existence of light moduli is highly model dependent. There

are known models where all the moduli are stabilized at a high scale and essentially

decouple from the cosmology [32].

Thus in principle it is possible to reheat to temperatures above F
1
2 and not suffer from

other cosmological problems. In many situations with metastable susy breaking vacua, the

barrier height is given parametrically by F
1
2 and the issue of thermally activating transitions

to the true minimum is potentially an issue.

3. Supersymmetric QCD

In [8] it was shown that for sufficiently small mass of the electric quarks in SU(NC) SQCD,

there is a long lived metastable vacuum. From the low energy (magnetic) point of view,

the supersymmetric vacua are created by an irrelevant operator attaining the same size as a

relevant operator and exist at large field values relative to the metastable vacuum.

At the high temperatures following reheating, the vacuum of the theory lies in neither

the metastable vacuum nor the various supersymmetric vacua, but rather at the minimum

of the free energy. As the universe cools the minima of the free energy develop towards the

metastable and supersymmetric vacua, making it possible to determine into which vacuum

the universe evolves.

The microscopic (electric) theory consists of asymptotically free N = 1 supersymmetric

SU(NC) QCD with NF massive flavors. There is an SU(NF )L×SU(NF )R approximate flavor

symmetry with the quarks transforming as

Q ∼ (�NC
,�NF L

) Qc ∼ (�NC
,�NF R

). (3.1)

The quark mass breaks the global symmetry with a superpotential

We = m TrQQc, (3.2)

where the masses m are taken to be degenerate for simplicity.

The electric theory goes strong at a scale Λ. Below this strong-coupling scale the system

may be described by an IR-free dual gauge theory provided NC < NF < 3
2NC [33]. The

macroscopic (magnetic) theory is an SU(N) gauge theory (N = NF −NC) with NF magnetic

quarks q and qc and has a Landau pole at Λ and runs free in the IR. The magnetic quarks

have the same approximate SU(NF )L × SU(NF )R flavor symmetry

q ∼ (�N ,�NF L
) qc ∼ (�N ,�NF R

). (3.3)

There is also an additional gauge singlet superfield, M, that is a bi-fundamental of the flavor

symmetry:

M ∼ (�NF L
,�NF R

). (3.4)
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The infrared theory is IR free with NF > 3N. The tree-level superpotential in the magnetic

theory is given by

Wm = y Tr qMqc − µ2 TrM, (3.5)

where µ2 ∼ mΛ. The F -terms of M are

F †
Mj

i

= y qa
i q

c j
a − µ2δj

i , (3.6)

which cannot vanish uniformly since δj
i has rank NF but qa

i q
c j
a has rank NF −NC < NF . As

such, supersymmetry is spontaneously broken in the magnetic theory by the rank condition.

This susy-breaking vacuum lies along the quark direction

〈M〉ssb = 0 〈q〉ssb = 〈qc〉ssb ∼ Nµ1IN (3.7)

with 〈FM 〉 ∼ µ2.

When the meson vev is turned on, the quarks decouple and the magnetic theory becomes

pure SU(N) super-Yang Mills. This theory has a dynamically generated strong coupling

scale, Λm(M), given by

Λm(M) = M

(

M

Λ

)
a
3

, (3.8)

with a = NF

N − 3, a strictly positive quantity when the magnetic theory is IR free. Here,

for simplicity, we have taken the meson vev to be proportional to the identity, i.e. 〈M〉 ∼
M1INF

. Gaugino condensation at this scale leads to an ADS superpotential [6] for M . At

temperatures above Λm the contributions to the superpotential from gaugino condensation

disappear. Below the mass of the quarks this additional nonrenormalizable contribution

obtains the form [6] Wdet =
(

det M
ΛNF −3N

)
1
N

. Thus the complete superpotential in the magnetic

theory is given by

W = −µ2 TrM + y TrqMqc + (detM)
1
N Λ−a. (3.9)

Interpreted physically, a characterizes the irrelevance of the determinant superpotential. For

instance, in the M ∼ η1I direction the superpotential behaves as

W ∼ −µ2η + η3+aΛ−a. (3.10)

The complete superpotential admits a susy-preserving solution of FM = 0; however because

the determinant superpotential is an irrelevant operator, this vacuum is very distant from the

origin (and also the metastable vacuum):

〈M〉susy = µ

(

Λ

µ

)
a

2+a

1INF
〈q〉susy = 〈qc〉susy = 0. (3.11)
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Around the origin the potential goes as

V ∼ −µ2
(

yqqc + η2+aΛ−a
)

. (3.12)

Due to the irrelevance of the determinant superpotential, the meson direction rolls off slower

than the magnetic quarks which are standard tachyons around the origin.

The rate per unit volume of bubble formation of the true vacuum in the zero temperature

case is

Γ ∼ µ4 exp(−S4), (3.13)

where S4 is the four dimensional Euclidean bounce action. Calculating the bounce action

for a general potential is only possible numerically or in the thin-wall approximation [34–36].

However, for square or triangular potentials the solutions are known exactly [37]. Along the

meson direction our potential is well approximated by a square potential barrier and the

bounce action is approximately

S4 ∼ 2π2 ∆η4
susy

(Vpeak − Vsusy)
. (3.14)

Only bubbles whose radius is greater than some critical value Rc will grow and cause a

transition to the true minimum. It was shown in [8] that S4 ∼
(

Λ
µ

)
4a

2+a
, which can be

made arbitrarily large–and the false vacuum long lived–by taking µ ≪ Λ. Ensuring that no

transition to the supersymmetric minimum has occurred during the lifetime of the Universe

(i.e., that the lifetime of the nonsupersymmetric universe exceeds 14 Gyr) places a constraint

on the theory

a

a+ 2
log

Λ

µ
>∼ 0.73 + 0.003 log

µ

TeV
+ 0.25 logN. (3.15)

This is a very weak constraint (amounting to (Λ/µ)a/(a+2) >∼ 2) . Of course, keeping the

Kähler corrections under control entails µ/Λ ≪ 1, and in addition it is the running between

Λ and µ that makes the Yukawa and gauge couplings perturbative.

The Finite Temperature Potential

In the previous section the zero temperature phase diagram was illustrated. In this section the

finite temperature phase diagram is discussed using the one loop, finite temperature effective

potential corrections to (3.9); they are [38]

δV (φ, T ) =
∑

α,boson

(

−π2

90T
4 + 1

24m
2
α(φ)T 2 + · · ·

)

+
∑

α,fermion

(

−7
8

π2

90T
4 + 1

48m
2
α(φ)T 2 + · · ·

)

At sufficiently high temperatures, the minimum of the free energy of the system prefers to

have the maximum number of light degrees of freedom. At low temperatures, these modes

decouple and the thermal contributions to the effective potential vanish; here the dynamics

are determined by the zero temperature potential.
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If the system is in thermal equilibrium at a temperature Λ, the highest temperature where

the magnetic theory is valid, then the minimum of the thermal potential lies at the origin,

i.e. 〈q〉 = 〈qc〉 = 〈M〉 = 0. As the Universe cools other minima of the potential will develop

elsewhere and the origin will eventually become unstable, leading to a phase transition to

either the supersymmetric vacua or the metastable vacuum. The phase transitions to the

metastable and supersymmetric minima are explored in the next two sections.

The Transition to the Metastable Vacuum

As we noted before, the magnetic quarks are tachyons around the origin with a negative mass

squared of −µ2. As the quark field acquires a vacuum expectation value, the meson and

anti-quark marry and acquire a mass, causing the one loop correction to the thermal effective

potential to stabilize the quark (and similarly for the anti-quark) at the origin of field space

at sufficiently high temperatures. We parametrize the fields in the quark direction as

q = qc =
1√
2N

(

ξ1IN 0
)

, (3.16)

where the quark vevs are degenerate since this is a D-flat direction and preserves a SU(N)D×
SU(NF−N) flavor symmetry. The non-D-flat directions cause fields to acquire more mass and

are stabilized more quickly than theD-flat direction. This makes theD-flat directions suitable

for study. Similar arguments apply to directions the preserve a smaller flavor subgroup. The

leading finite-temperature corrections to the potential are of the form ξ2T 2; explicitly we find

V = N

(

yξ2

N2
− µ2

)2

− c0N
2
FT

4 + (c
(g)
1 g2 + c

(y)
1 y2)Nξ2T 2 + . . . , (3.17)

where c
(g,y)
1 ∼ O(1) and c0 is a pure number. This is essentially identical to the standard

renormalizable Higgs potential at finite temperature that develops a second-order (or perhaps

weakly first order) phase transition at critical temperature

T ssb
c ∼ µ

y
1
2N

, (3.18)

in which the origin becomes unstable and the minimum moves approximately smoothly to

〈q〉 6= 0. There is no impediment to making this transition so long as the quarks and mesons

are not at the susy preserving vacuum at T ssb
c .

The Transition to the susy Vacuum

The phase transition to the supersymmetric vacuum is more interesting. Any transition to a

lower minimum away from the origin must be first order and occur through bubble nucleation.

The meson vev in this direction breaks SU(NF ) × SU(NF ) → SU(NF )D. We parametrize

the fields in the meson direction via

M =
η1I√
NF

(3.19)
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ηsusyTc

η

V(η ,Tc)

Nµ4

T>Tc
T=Tc
T<Tc

Square approx.

Figure 1: Cartoon of the potential in the meson direction, for temperatures at, above and below the

critical temperature, T susy
c , here ηsusy =

(

µ2Λa
)

1
2+a . Also plotted is the square approximation to the

potential used for calculating the bounce action.

where other directions cause fields to acquire larger masses and therefore are stabilized more

readily. We find the finite temperature potential in this direction to be given by

V =







































µ4 + c1 y
2Nη2T 2 − c0(NNF +N2)T 4 + · · · T ≥ Λm(η)

NΛ4

∣

∣

∣

∣

(

η√
NF Λ

)2+a
− µ2

Λ2

∣

∣

∣

∣

2

+c1 y
2Nη2T 2 − c0NNFT

4 + · · · T ≥ yη

NΛ4

∣

∣

∣

∣

(

η√
NF Λ

)2+a
− µ2

Λ2

∣

∣

∣

∣

2

T < yη

(3.20)

where c0 and c1 are dimensionless pure numbers.

Since a > 0 the zero-temperature potential, near the origin, behaves as

V ≃ −µ2Λ−aη2+a. (3.21)

The additional contribution from the quark superfields can stabilise the origin even at very

low temperatures. This means any transition to a lower minimum in the meson direction

will take place via tunneling. The existence of fields that become light at the origin of the

Polonyi field is crucial to the stabilization. Models with several dimensionful scales, such as

the O’Raifeartaigh model of Sec. 4, lack this feature and do not have a stable origin at finite

temperature.

The critical temperature, T susy
c , is the temperature at which the second minimum of the

potential is degenerate with the vacuum at the origin; see Figure 1 for a plot of the potential

in the meson direction. Since the second minimum is determined by irrelevant interactions,

it is always at large field values in comparison with µ. This means that around this second

minimum the quarks are particularly heavy and they no longer contribute to the potential,
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whereas near the origin they are the dominant contribution to the potential. The degeneracy

of the two minima occurs at

T susy
c ∼ (NF +N)−

1
4 µ. (3.22)

Although our potential (3.20) has a discontinuity at yη = T susy
c , in reality there would be a

smooth transition between the two limits. At this value of η the peak of the potential barrier

is of height Vpeak ∼ Nµ4.

The bubble nucleation rate of the susy vacuum at finite temperature is

Γ ∼ T 4e−S3/T (3.23)

where S3 is the three dimensional bounce action. Using the square barrier again and extending

the result to three dimensions, we find that the bubble action is given by

S3 ∼ 4π

3
√

2

∆η3
susy

[

(Vpeak − Vsusy)
1
4 − (Vpeak − V0)

1
4

]2 . (3.24)

where V0 is the potential at the origin of field space. The transition to the true minimum is

dominated by bubbles of a size Rc

Rc ∼
∆ηsusy∆V

1
2

δV
(3.25)

where ∆V ≃ µ4 is the height of the barrier and δV is the potential difference between the

true minimum and the false minimum, given by

δV ≃ µ4

(

1 −
(

T

T susy
c

)4
)

. (3.26)

At temperatures beneath T ssb
c , the quarks roll off to the metastable minimum, but this does

not make a parametric difference in the arguments above. The transition to the supersymmet-

ric vacuum is dominated by bubbles of size Rc as bubbles smaller than Rc shrink and larger

are much larger action. At temperatures below T susy
c and above R−1

c the tunneling rate is

the finite temperature result (3.23). At temperatures below R−1
c , bubbles of radius Rc may

no longer be thermally nucleated and the tunneling rate changes into the zero temperature

result (3.13). The radius of the critical bubble, Rc, is considerably smaller than the Hubble

length and so all gravitational effects can be ignored. The transition temperature is given by

T3d→4d ≃ µ

(

Λ

µ

)− a
2+a

, (3.27)

though the rate shuts off well before this low temperature. However, since δV at the transition

temperature increases the the action for these bubbles, the largest contribution to bubble

nucleation comes from temperatures at T = T susy
c /3, where

log
Γ

µ4
≃ − 9π√

2N

(

Λ

µ

)
3a

2+a

. (3.28)
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The crucial feature of this result is that the quantity that guarantees the longevity of the

Universe also protects the cosmological evolution:

(

Λ

µ

)
a

2+a

≫ 1. (3.29)

Thus the system evolves towards the metastable vacuum so long as the Universe is cosmolog-

ically long lived.

In order to avoid tunneling into the true vacuum during the evolution of the universe,

we require the fraction of space remaining in the false vacuum [39] at the end of thermal

tunneling to be of order unity, corresponding to the constraint

Γ(T ) a3(T )V∆t ≃ 0, (3.30)

where V is the spatial size of our universe today; a3(T ) is the scale factor blueshifting this

volume to the appropriate size at the time the thermal transitions are active; and ∆t ∼
H−1(T ) ∼MP /T

2 is the duration of this period. This constraint is satisfied for

a

a+ 2
log

Λ

µ
& 0.64 − 0.010 log

µ

TeV
+ 0.17 logN. (3.31)

This constraint is somewhat weaker than the condition that the lifetime of the metastable

vacuum is greater than 14 Gyr found in (3.15). Therefore if the metastable vacuum is suf-

ficiently long lived, Big Bang cosmology will evolve towards the metastable vacuum rather

than the true minimum.

Recap

To summarize the calculations of the previous section, at temperatures above O(µ) the

minimum of the free energy is at the origin of field space and the full SU(N) gauge and

SU(NF L) × SU(NF R) global symmetry is restored. Beneath this temperature both the

supersymmetric and susy breaking vacua become minima of the free energy; however, the

transition to the susy breaking vacuum is a second order phase transition that occurs rapidly,

while the transition to the susy preserving vacua is first order. At the origin of field space

there are many light states that acquire a large mass near the susy preserving minimum.

Creating a bubble of the true vacuum requires decoupling these light fields from the theory

near the origin. This fluctuation is entropically costly and makes the transition strongly

first order. This is to be contrasted with the transition to the metastable minimum where

no fields acquire masses parametrically larger than the temperature. The result is that the

Universe quickly evolves into the susy breaking vacuum, with the supersymmetric vacua only

reached through thermally activated bubble nucleation. The thermal bubble nucleation rate

is closely related to the zero temperature rate, so that the first-order phase transition may

be adequately suppressed by ensuring that the lifetime of the Universe is sufficiently long.

Which of the two constraints is stronger turns out to be related to details of the model, but
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they will always be closely related for the following reason: The present age of the Universe,

the weak scale, and the cosmological constant are related via the Planck scale and constitute

the largest contribution to the constraints. The actions for the zero- and finite-temperature

bubbles are also closely related, so the differences in the log of the rates lie in O(1) numbers.

3.1 Related Models

There exist a variety of deformations of the ISS model that exhibit similar cosmological

evolution. One example is to add to the electric theory an adjoint chiral superfield, Φ with

the superpotential couplings

Wel = µ TrQQc +
κ

3
TrΦ3 +

mΦ

2
TrΦ2 + λ TrQΦQc (3.32)

Supersymmetric QCD with these additions constitutes the k = 2 Kutasov model [40–42]; it

is asymptotically free with stable vacua for NC/2 < NF < 2NC .

This microscopic theory has a dual magnetic description in terms of a SU(N) gauge

theory with N = 2NF −NC , NF magnetic quarks q, qc, a magnetic adjoint Y, and two gauge

singlet mesons M1,M2, where M1 = QQc, M2 = QΦQc. The dual magnetic superpotential of

the theory is

Wmag =
gY

3
TrY 3 +

mY

2
TrY 2 −m2

1 TrM1 −m2
2 TrM2

+ Tr(h1M1qq
c + h2M2qq

c + h3M1qY q
c) (3.33)

The corresponding condition on N for an IR free magnetic theory is 0 < 2N < NF . As

in the ISS theory, supersymmetry in this model will be broken by the rank condition in the

M2 F-term: F(M2)i
j

= h2q
iqc

j −m2
2δ

i
j . Since NF > N, not all of these F-terms may be set to

zero, and supersymmetry is broken, with M2 acquiring an F-term vev and the dual squarks

taking on vacuum expectation values.

When the M2 meson obtains a vev, the magnetic quarks decouple and the adjoint may be

integrated out. As in the ISS model, the theory has a dynamically generated strong coupling

scale Λm(M2), given by

Λm(M2) = m
1/3
Y M

2/3
2

(

M2

Λ

)
a
3

,

where now a = NF

N − 2, a strictly positive quantity when the magnetic theory is IR free. The

supersymmetry-preserving vacuum is created again by gaugino condensation at this strong-

coupling scale, and is given by an ADS superpotential of the form Wdet = mY

(

det M2

ΛNF −2N

)
1
N
.

The supersymmetric vacuum is at a large vev in the M2 meson direction relative to the susy

breaking vacuum because the ADS superpotential looks like an irrelevant operator from the

low energy point of view.
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The metastable vacuum is long-lived because leaving it requires tunneling to a distant

point in field space [43]. The zero-temperature tunneling parameter in this theory for transi-

tions into the supersymmetric vacuum is given by

S4 = 2π2

(

m2

mY

)
4

1+a
(

Λ

m2

)
4a

1+a

. (3.34)

The longevity of the metastable vacuum is allowed by Λ
m2

≫ 1, provided m2 ∼ mY . For a

realistic model to have a lifetime greater than 14 Gyr requires

a

a+ 1
log

Λ

m2

>∼ 0.73 + 0.003 log
m2

TeV
+

1

a+ 1
log

mY

m2
+ 0.25 logN, (3.35)

which mimics ISS with an additional dependence on the mass ratio mY /m2.

The phase transition transition into the susy-breaking minimum is second-order, while

the transition into the supersymmetric minimum is first-order if a > 1 and second-order (or

weakly first-order) if 0 < a ≤ 1. The finite-temperature tunneling parameter for tunneling

into the susy vacuum in the square barrier approximation is

S3

T
=

4π

3
√

2N

m2

T

(

m2

mY

)
3

1+a
(

Λ

m2

)
3a

1+a 1

[1 − T/Tc]2
. (3.36)

leading to a finite-temperature bound on the theory of

a

a+ 1
log

Λ

m2

>∼ 0.64 − 0.010 log
m2

TeV
+ 0.17 logN +

1

a+ 1
log

mY

m2
. (3.37)

Thus the generic constraints Kutasov models follow the same lines as the ISS model–the

longevity of the universe is sufficient to guarantee the selection of the metastable vacuum.

Perhaps more interestingly, this theory admits a class of solutions (0 < a ≤ 1, or 2N <

NF ≤ 3N) for which the determinant superpotential is marginal or relevant, and thus the

phase transition into the susy vacuum may be second-order. Nonetheless, the supersymmetric

vacuum exists far out in field space; the presence of light fields around the origin ensures that

the theory will be stabilized against transitions into the supersymmetric vacuum, provided

the cosmological longevity bound is satisfied by the parameters of the theory.

3.2 Gravitationally Stabilized Gauge Mediation

A less promising situation is where the susy breaking minima are created at distant values in

field space where there are fewer light species than at the origin. A recent example was given

in [44]. In this model, a susy breaking minimum was created through irrelevant interactions of

the supergravity potential. The theory consists of a singlet chiral superfield S and vector-like

messenger superfields q, qc and a superpotential

W = µ2S − λSqqc +m3 (3.38)
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and a Kähler potential

K = S†S − (S†S)2

2
√

3Λ̃2
+ q†q + qc †qc, (3.39)

where the constant m3 is relevant to the cancellation of the cosmological constant and Λ̃ is

the cut-off of the low energy theory.

There exists a susy-preserving minimum lying in the q, qc direction at

〈q〉susy = 〈qc〉susy ≃ µ√
λ

+ O
(

m3

λM2
P

)

〈S〉susy ≃ O
(

m3

λM2
P

)

,

where the shifts of O
(

m3

λM2
P

)

due to gravitational interactions are negligible. The theory in

this direction resembles the quark direction of the ISS model, albeit with a supersymmetry-

preserving minimum. This potential develops a second-order (or weakly first-order) phase

transition into the supersymmetric minimum at a critical temperature T susy
c ∼ µ√

λ
.

In the S direction, a susy-breaking minimum is created away from the origin through

the MP suppressed operators with µ and m balancing each other to cancel the cosmological

constant m3 ∼ µ2MP . S acquires an F-term vev, FS ≃ µ2, and the potential in this direction

is of the form

V0(S) ≈ 2√
3
µ4

∣

∣

∣

∣

∣

S

Λ̃
− Λ̃

MP

∣

∣

∣

∣

∣

2

+ ... (3.40)

The minimum lies far from the origin relative to the susy preserving one at

〈S〉ssb ∼ Λ̃2

Mp
〈q〉ssb = 〈qc〉ssb = 0. (3.41)

The bubble action for tunneling from the susy breaking vacuum to the susy preserving one

is given parametrically by

S4 ∼
(

Λ̃2

µMp

)4

. (3.42)

The bubble action is large if Λ̃ >∼ 108 TeV × (µ/TeV)
1
2 .

If this sector is thermalized at a temperature greater than F
1
2

S , finite-temperature cor-

rections tend to stabilize the theory at the origin at high temperatures, away from the

susy-breaking vacuum. The very same features that served to guarantee the thermal evo-

lution of SQCD-based theories into their susy-breaking vacua prevents the evolution of this

gravitationally-stabilized theory into its supersymmetry breaking vacuum. At a temperature

Tc ∼ µ√
λ

there is a second order phase transition to the susy preserving vacuum, while the

transition to the susy breaking vacuum is never energetically favorable. If this hidden sector
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reaches thermal equilibrium above a temperature O(µ), thermal evolution will take it into

the supersymmetric vacuum.

This argument obviously does not exclude the possibility of a different ansatz for the early

Universe that would allow a dynamical explanation for occupation of the false vacuum, as we

will discuss in Sec. 5. Nonetheless, it illustrates the utility of finite-temperature arguments

in evaluating susy-breaking models, as parametric longevity of the metastable vacua at zero

temperature may not be sufficient to guarantee the cosmological validity of the theory.

4. The Classic O’Raifeartaigh Model

In the previous section it was shown that reheated ISS-like O’Raifeartaigh Models always cool

to the vacuum closest to the origin. Furthermore, thermally activated bubbles that stimulate

vacuum decay from the false minimum to the true minimum do not place a parametrically

stronger constraint on the theories than guaranteeing that the Universe lives for a sufficiently

long period of time. This came about because there were massless fields around the origin that

created an entropic cost to making large excursions in field space at high temperatures. This

is not always the case and minimal O’Raifeartaigh models, [45], provide counter examples

that are illustrated here. In this case the origin is not as non-perturbatively stable as ISS-like

models at finite temperature.

The classic O’Raifeartaigh superpotential involves three superfields ψ,ψc, Z with super-

potential

W = mψψc + λZ(ψ2 − µ2) (4.1)

and canonical Kähler terms.

In this canonical O’Raifeartaigh model, the F -flatness conditions can not be simultane-

ously satisfied and if µ < m the vacuum is given by

〈ψ〉ssb = 〈ψc〉ssb = 〈Z〉ssb = 0 (4.2)

with FZ = λµ2. Conversely, if µ > m, ψ acquires a vacuum expectation value and the theory

returns to the same form as above after re-diagonalizing the fields and exchanging the role of

ψc and Z. However, apart from a relabeling, the dynamics are identical to the first case and

henceforth we will restrict ourselves to considering the case µ < m.

To analyze this theory in the limit m≫ µ we may integrate out the O’Raifeartaigh fields,

ψψc, and consider the low energy effective action of only the Polonyi field, Z, beneath the

scale m. The superpotential here is simply that of the Poloyni model,

W = −µ2Z. (4.3)

Upon integrating out the O’Raifeartons, the Kähler potential picks up a one loop renormal-

ization, given by

K =

(

1 − cλ2

16π2
log(1 +

λ2|Z|2
m2

)

)

|Z|2. (4.4)
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This renormalized Kähler potential stabilizes 〈Z〉 at the origin and is valid for large values of

Z until the logs have to be resummed. At large and small field values, the scalar potential

reduces respectively to the limits

V (Z) ≃ µ4 +
cλ4µ4

8π2m2
|Z|2 Z ≪ m

V (Z) ≃ µ4

1 − cλ2

16π2 log λ2|Z|2
m2

Z ≫ m. (4.5)

This theory possesses a single minimum in which supersymmetry in broken. However, it

is possible that whatever generates the scale µ ≪ MP also generates corrections the super-

potential. Additional contributions to the superpotential of the form

δW =
1

2
ǫµZ2 (4.6)

create a supersymmetric vacuum at field values

〈Z〉susy = ǫ−1µ 〈ψ〉susy = 0. (4.7)

In this case the theory possesses two vacua, and the susy-breaking vacuum at the origin

becomes metastable. Adding the mass term for the Polonyi field results in a potential

V (Z) = µ4 |1 − ǫZ/µ|2
∂Z∂Z̄K

. (4.8)

This retains a local minimum near the origin due to the Kähler corrections when ǫ≪ λ2/16π2.

The potential peaks around the value, for simplicity from now on we set c = 1,

Zpeak =
λ2

16π2

µ

ǫ
. (4.9)

Notice that the peak is determined at large field values relative to m, where the only dimen-

sionful variation of the scale is on the order µ/ǫ. The height of the potential at its peak is

roughly

∆V ≈ λ2

8π2
µ4. (4.10)

In this case, the lifetime of the metastable vacuum of the origin may be estimated using

a triangular potential. With the parameters of this potential, the action is dominated by

a bubble in which the field tunnels to the top of the potential and then rolls down to the

supersymmetric minimum. The tunneling action for this non-thin wall bubble is approximated

by

S4 ≃ 2π2 (Zpeak)
4

∆V
= 2π2

(

λ2

16π2

)3

ǫ−4. (4.11)
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By making ǫ small enough, the lifetime of the universe can be made arbitrarily long.

Above a temperature T ∼ m, the Yukawa interactions stabilize all three fields at the origin

of field space. For temperatures beneath m, ψ and ψc decouple. Whether the O’Raifeartaigh

fields are stable and how efficiently they annihilate is a model-dependent question. In the

minimal model under consideration, they are stable and can only annihilate into Zs through

the coupling λ. For simplicity consider adding fields to the theory that cause ψ to decay

quickly. 1

At low energies, Z only has irrelevant interactions and thus, aside from the −T 4 con-

tribution to the thermal effective potential (which does not depend on Z), the one-loop free

energy is simply the zero-temperature potential. There are no additional interactions that

hold Z at the susy-breaking minimum. Since the barrier height is set by µ4 and can be much

less than m4, it is possible for the fields to undergo large thermally-induced excursions in field

space to the top of the barrier and then slide down unsuppressed.

The finite temperature bubble nucleation rate is dominated by the three-dimensional

bubbles as long as

T >∼ 4πλǫµ (4.12)

This bubble nucleation rate is given by

S3/T = 4π
(δZ)3

(δV )
1
2T

= 4π

(

λ

4π

)5

ǫ−3 µ

m
(4.13)

where the temperature T = m has been used as the first temperature at which the transition

is kinematically allowed, and where the dominant contribution to the tunneling rate occurs.

Whereas the condition on the longevity of the Universe only placed a limit on ǫ, the finite

temperature rate places an additional limit on µ/m that arises because it is possible to reheat

parametrically above the barrier height.

The parametrically different constraint coming from thermal stability is more stringent

than that coming from the zero temperature lifetime. This is a feature of not having massless

particles at the origin until temperatures of order F
1
2 . The absence of this entropic contribu-

tion to the free energy allows the thermal stimulation of bubbles that require large excursions

in field space.

5. Moduli Trapping and Thermalization

Thus far it has been assumed that the hidden sector has thermalized. In this section the

thermalization of ISS-like models is briefly discussed. It is difficult to make exact statements

about thermalization since they depend on the details of how the susy breaking is transmitted

1If instead the O’Raifeartons are stable there can be a significant number density around contributing to

the free energy; we thank Takemichi Okui for pointing this out. This can lead to a stabilizing effect similar to

the dynamics of MaVaNs [46]. The stabilization by massive particles is not as effective as having light states.
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to the MSSM; however, some details are more universal and are explored here. A plausible

scenario to start out of thermal equilibrium is if there is a high scale of inflation where the

inflaton decays only to the MSSM and the reheat temperature is significantly lower than the

Hubble constant during inflation. In this case the initial conditions for the FRW phase of

the Universe are 〈Q〉 ∼ H ≫ T,Λ which can easily result in the fluctuations of Q being

the dominant form of energy in the Universe. The oscillations of Q will not last a long

time because as the quarks oscillate, they will go through the origin of field space where the

vectors bosons become light and particle production will ensue [47–49]. With the exception of

the small electric quark mass, the electric theory has a moduli space in the D-flat directions;

squarks with large vevs will initially oscillate along the D-flat directions, dumping energy into

the production of vectors as they pass through an enhanced symmetry point at the origin.

The figure of merit is the non-adiabaticity parameter which is

I =
(∆Q)2

〈Q̇〉
(5.1)

where ∆Q is the amount by which the oscillations miss the true origin of field space and 〈Q̇〉
is the average value of velocity of the field as it oscillates through the origin. In order to

obtain significant particle production I ≪ 1. At zero temperature, as Q passes close to the

origin, the dynamics become best described by the magnetic theory. Here the largest one

would expect ∆Q to be is ∼ µ and 〈Q̇〉 ≃ mQ0 with Q0 being the initial field amplitude. The

non-adiabaticity parameter is thus given by

I =
Λ

Q0
(5.2)

where µ2 = mΛ has been used. As the quarks oscillate past the origin, the vectors become

massive and promptly decay into massless quarks and squarks (which are massless because

they are Goldstone bosons of the broken flavor symmetry). This results in the energy of the

squark oscillations rapidly converting into radiation. The oscillations of the squark fields are

exponentially damped with a decay constant

tdamp ∼ 2π

m

(

2π

g

)3/2

. (5.3)

The electric quarks are quickly localized at the origin; their initial energy goes into radiation

which reheats the Universe to a high temperature. Thermal equilibrium is reached at a

temperature T ≫ µ.

Similar arguments go through for the case where the initial field oscillations are large

compared to µ but small enough that the magnetic theory is always the valid description.

Analytically this is more difficult to show, but numerically, meson oscillations pass near the

origin after several oscillations so long as the mesons have enough kinetic energy to reach the

origin. Both the quark and meson oscillations quickly damp and the system reaches thermal

equilibrium with the fields localized at the origin. If the hidden sector has relevant couplings
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to the MSSM (e.g. in gauge mediated models), then produced particles will thermalize with

the visible sector quickly.

The important feature of these models is that there are massless fields around the origin

which greatly enhance the effects that dynamically trap fields around the origin. The same

effects that lead to trapping and thermalization also make the origin the minimum of the

free energy at high temperatures; this subsequently evolves into the nearest vacuum as the

temperature cools. These arguments apply to the Kutasov models as well. In models like

the retrofitted, “classic” O’Raifeartaigh model discussed in Sec. 4 where the O’Raifeartaigh

fields are massive around the origin, trapping effects are less active. This means that finding

desirable initial conditions requires more assumptions.

5.1 Moduli Trapping in Gravitationally Stabilized Gauge Mediation

The situation for gravitationally stabilized gauge mediation is more complicated. This is

because if S is displaced far from the origin, it oscillates about the susy breaking minimum

and not the origin of field space where the messengers, q, are light. This means that the

non-adiabaticity parameter for the quarks in the oscillating S field with an amplitude, S0, is

given by

I =
〈S〉2ssb sin2 θ

S0mS
. (5.4)

where θ is the angle of the inital S vev relative to the location of the susy preserving origin.

The numerator has the simple interpretation of being the impact parameter of the oscillation2.

In order to not be trapped at the origin I should be much greater than unity. The maximum

initial displacement for S is Mp and relating mS and 〈S〉ssb to the fundamental parameters

this corresponds to

I =
M3

Pµ
2

Λ5 sin2 θ
≫ 1 (5.5)

The constraint on the lifetime of the Universe is stronger unless sin2 θ ≪ Λ/MP . Thus, so long

as the inflaton does not directly reheat this sector, there appears to be a viable cosmological

story as to how the susy breaking minimum is reached. The one caveat is that it has been

implicitly assumed that oscillations greater than Λ are not qualitatively different. Since this

is the scale where Kähler corrections become important, this assumption is not completely

justified in the low energy effective theory. If the oscillations are restricted to be smaller than

Λ, the non-adiabaticity is even smaller and the theory is even more safe.

6. Discussion

In theories with many vacua, understanding where the Universe starts is an important ques-

tion. The string landscape typically has string-scale potential barriers and the population of

2We thank R. Kitano for explaining this to us.
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these vacua usually requires mechanisms like eternal inflation. Inside a single valley, there

may be many metastable minima that are separated by sub-stringy barriers and their pop-

ulation may be understood through field-theory dynamics. In this note we have addressed

the simplest possible mechanism for populating vacua, through thermal evolution of the free

energy. In O’Raifeartaigh models with massless fields around the origin (e.g. ISS-like mod-

els) and with reheating to temperatures above the barrier, the thermal evolution takes the

theory to the minimum closest to the origin. If this turns out to be the metastable, susy

breaking minimum, there are no additional constraints on the parameters of the theory after

guaranteeing that the lifetime of this minimum is cosmologically viable.

In the case where the metastable minimum is the distant vacuum from the origin when

compared to the supersymmetric vacuum, it becomes dangerous to reheat the susy breaking

sector to temperatures above the barrier height. However, if at the end of inflation the

fields start their motion at large vev then they may instead evolve to the far minimum. The

probability of this outcome is a detailed question depending on how the field approaches the

origin since here there can be production of light states resulting in a large damping force.

If there are no massless fields around the origin, like in the original O’Raifeartaigh model,

there is no entropic cost to moving away. With a high reheat temperature thermal tunneling

becomes less suppressed. The thermal evolution will lead to additional constraints on the

parameters of the theory and/or the reheat temperature even after ensuring the lifetime of

the Universe is cosmologically viable.

While this work was being completed a paper taking different cosmological initial condi-

tions was published [50].
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